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Knot theory
　　A knot is a closed string in three-dimensional space (Figure 1), and 
beautiful knots with high symmetry have been used as geometrical patterns 
from ancient times. When I was a postdoctoral researcher at Algarve 
University in Portugal, I visited Conímbriga, the ruins of a Roman city, and 
found lots of knots in the mosaic floors (Figure 2). In knot theory, we treat 
these geometric objects mathematically and we study the classification and 
structure of knots.
　　B efore  ta l king  ab out  knots ,  l e t  us  c ons ider  a  p o lyg on on a  
two-dimensional plane as a simple example. First, how many kinds of polygon 
exist? Their number is infinite. You all know them as triangles, squares, 
pentagons, etc. Another question: can we determine what kind of polygon a 

given polygon is? Yes, we can find that by examining the structure of the 
polygon. We can find the answer by examining the number of edges, the 
number of corners or the sum of the interior angles. For instance, if the sum of 
the interior angles of a given polygon is 900 degree, then the polygon is a 
heptagon. So what about knots?

Knot invariant before 1999
　　First question: how many kinds of knot exist? We find that there is an 
infinite number of knots. As you can see from the first line in Figure 3, by 
gluing the top and bottom of two strings together, we obtain a knot that has 
two components that are not intertwined(left in Figure 3). If we twist the 
strings once and glue the top and bottom together again, we obtain a 
one-component knot that is topologically the same as the trivial knot in Figure 
1 (middle in Figure 3). If we twist the strings twice and glue the top and 
bottom together, we get a two-component intertwined knot (right in Figure 3).

We can obtain more complex intertwined knots by twisting the string three or 
four times and gluing the top and bottom together. Using three strings and 
four strings, more complex knots can be made. Not all knots are made in this 
way; there are more complex knots. This does not prove that there is an 
infinite number of knots, but we can understand the fact intuitively from the 
above.
　　Second question: can we determine what kind of knot a given knot is? 
Unfortunately, we cannot always know what kind of knot a given knot is. For 
instance, Trefoil 2 and Trefoil 3 in Figure 1, which do not look the same at 
first glance, become the same knot if we use a continuous deformation 
without separating the knot components (please confirm this for yourself ). In 
addition, Trefoil 1 will not change into Trefoil 2 using a deformation. 
However, if you work a little harder, Trefoil 1 might be made into Trefoil 2 
(do not try too hard, because these are different). That is, we need to indicate 
that Trefoil 1 will not change into Trefoil 2. Knot invariants are effective in 
proving this.

Alexander polynomial and Jones polynomial
　　In extracting the structure of a knot, we need to define a knot 
invariant, which is a map from the set of knots to a well-known set, and 
classify all knots using the knot invariant. There are knot invariants such as 
the Alexander polynomial and the Jones polynomial, which are maps from 
the set of knots to the set of one variable polynomial. How to construct 
these polynomials is omitted here, but the evaluations for the knots in 
Figure 1 are summarized in Table 1.
　　From Table 1, the evaluations of the Alexander polynomial for the 
trefoil and the figure-eight knot are different and so the Alexander 

polynomial tells us that these knots are different. However, although Trefoil 
1 and Trefoil 2 (and 3) are different knots, the evaluations of their 
Alexander polynomials are equal. That is, the Alexander polynomial cannot 
always determine whether they are different or not. In general, the 
Alexander polynomial cannot distinguish knots that have a mirror image 
relationship like the relationship between Trefoil 1 and Trefoil 2.
　　On the other hand, Trefoil 1 and Trefoil 2 can be distinguished using 
the Jones polynomial (Table 1). The Jones polynomial tell us whether the 
knots l isted in Fig ure 1 are equal or different.  However,  the Jones 
polynomial also does not classify all knots, because there are non-trivial 
knots whose evaluation of the Jones polynomial is the same as the trivial 
knot. Whether we can construct a knot invariant which classifies all knots is 
still an open problem in knot theory.

From set theory to category theory
　　Set theory deals with collections of mathematical objects. Category 
theory deals not only with collections of objects but also with the relationship, 
called a morphism, between the objects in a collection. Sometimes we explore 
deeper structures by dealing with objects and morphisms. Using category 
theory it succeeded to obtain new knot invariants.

Knot invariants after 1999
　　In 1999, M. Khovanov refined the Jones polynomial using a category. The 
refined polynomial is called the Khovanov polynomial. This is a knot invariant 
which is a map from a set of knots to a set of two variable polynomials. By 
specializing the parameter t in the Khovanov polynomial into -1, the Jones 
polynomial is recovered.
　　From the evaluations of the Jones polynomial and the Khovanov 
polynomial in Table 1, the Jones polynomial is recovered from the Khovanov 
polynomial if the parameter t is specialized into -1. Moreover, the number of 
terms in the Khovanov polynomial for the figure-eight knot is greater than the 
number of terms in the Jones polynomial. The Khovanov polynomial can thus 
capture the deeper structure of knots. In addition, the evaluation of the 
Khovanov polynomial for the trivial knot is different from for non-trivial 
knots. That is, the Khovanov polynomial can detect the trivial knot.
　　Developing Khovanov’s research, we refined the generalization of the 
Jones polynomial using category theory. From its construction, it can be seen 
that our invariant is a generalization of the Khovanov polynomial. Moreover, 
our knot invariant relates to a knot invariant derived from the topological 
string theory method in mathematical physics.

Further research
　　Research into refining the knot polynomial using category theory so far 
has been limited to refinement of the knot invariant called type A. One 
problem for further research is how to construct a refinement of a knot 
polynomial which is not type A. We are also studying a refinement of 
representation theory of a quantum group, which is a concept for describing 
the symmetry of a physical phenomenon. We are hoping that our refinement 
of representation theory will induce a new knot invariant and the new knot 
invariant will help to classify knots.

e are studying knots, which are formed by closed strings in three-dimensional space. Because of the simple structure of the knot, our knot studies relate to 
fields such as string theory in mathematical physics and research into knots in DNA. In fact, the knot invariant defined by the author and the knot 

invariant calculated by string theory coincide, and new knot invariants using category theory are applied to the structure determination of DNA knots.
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Figure 1: From the left: Trivial knot, Trefoil 1, Trefoil 2, Trefoil 3, Figure-eight knot 

Figure 3: Knots by string closure

Figure 2: Trivial knots (geometrical pattern).


